the interpretation of $(|F_Q|^2/|F_P|^2)F_P$ (Ramachandran & Srinivasan, 1970) and from n successive convolutions of $|F_O|^2/|F_P|^2$ terms one can evaluate the contribution to peak heights as $(\Sigma_Q/\Sigma_P)^n f_X$. A lot of lesser peaks from this synthesis in more general positions will contribute to the general background.

The results of numerical summation for R_P and R_Q , Table 2, showed that in the range of convergence the peak

Table 2. The numerical values of R_P and R_Q obtained by summation of the first 51 terms ($k_{max} = 50$) of the expansion

> $|F_Q|/|F_P|$ R_P R_o 0.00 1.000 0.500 0.10 1.002 0.499 0.20 1.010 0.498 0.30 1.023 0.494 0.40 1.040 0.490

heights of P and Q atoms are not very sensitive to the value of Σ_O/Σ_P . The P enhancement obtained from the first approximation and the Σ_O/Σ_P dependence of the Q peak heights from the second approximation are overestimated. But all of this is derived for the rather limited range of Σ_Q/Σ_P

The fact that the peak heights are almost insensitive to Σ_Q/Σ_P shows that the γ' synthesis is a very good tool for location of unknown atoms and for refinement of atom positions and electron density (especially as $2F_o - F_c$ synthesis) in the final stages of structure determination and no special synthesis seems to be necessary.

References

MAIN, P. (1979). Acta Cryst. A35, 779-785. RAMACHANDRAN, G. N. & SRINIVASAN, R. (1970). Fourier Methods in Crystallography. London: Wiley-Interscience.

Acta Cryst. (1984). A40, 162

The consequences of the neglect of TDS correction for temperature parameters: erratum. By ANDREW W. STEVENSON, School of Physics, University of Melbourne, Parkville, Victoria 3052, Australia and JIMPEI HARADA, Department of Applied Physics, Nagoya University, Chikusa-ku, Nagoya 464, Japan

(Received 10 August 1983; accepted 30 August 1983)

Abstract

In the paper by Stevenson & Harada [Acta Cryst. (1983), A39, 202–207] the calculated values of Δ' (and consequently $\delta \bar{B}$) in Table 1 are in error. For KCl and BaF₂ the conventional (rather than primitive) unit-cell volumes were mistakenly used when calculating q_{ZB} . For CdS and CdSe the factor used to get q'_{ZB} from q_{ZB} was incorrect. The new (corrected) Table 1 is given below. The agreement between

 $\delta \vec{B}$ and $\delta \vec{B}_{obs}$ is, with the new $\delta \vec{B}$ values, generally better; with $\delta \overline{B}$ for KCl closer to the $\delta \overline{B}_{obs}$ value given by Cooper & Rouse [Acta Cryst. (1968), A24, 405-410], namely 0.16 Å². The calculated value of the 'overall' temperature parameter for CdS becomes 1.29 Å^2 . It should also be noted that there is a factor of 2 missing from the denominator of equation (15).

Table 1. Details for comparison of experimental and theoretical Δ' values for each of four studies

The size of the detector aperture is given with the width first in each case.

	Expe	Experimental conditions									
	Scan mode	Scan width (°θ)	Detector aperture (°)	Lattice parameters		q_s	q _{zв}	Results		δĒ	$\delta \bar{B}_{abc}$
				a (Å)	c (Å)	(Å ⁻¹)	(Å⁻¹)	Δ'	$\Delta'_{\rm obs}$	(Ų)	$(Å^2)$
KC1 CdS	ω ω_26	2·5	1.5×1.5 2.0 × 1.5	6·290	-	0.1702	0.9837	0.073	0.087 (0.105)	0.14	0.16 (0.20)
CdSe	$\omega - 2\theta$	3.0	2.0×1.5 2.0×1.5	4.299	7.010	0·1991 0·1991	0.8413	0.080	0.057	0.11	0.08
BaF ₂	$\omega - 2\theta$	2.4	$2 \cdot 2 \times 3 \cdot 2$	6.196	-	0.1682	0.9986	0.062	0.066	0.05	0.05

0108-7673/84/020162-01\$01.50 © 1984 International Union of Crystallography